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Abstract

Battery Energy Storage Systems (BESSs) are critical to smart grid functioning but are
exposed to mounting cybersecurity threats with their integration into IoT and cloud-
based control systems. Current solutions tend to be deficient in proper multi-class attack
classification, secure encryption, and full integrity and power quality features. This paper
proposes a comprehensive framework that integrates machine learning for attack detection,
cryptographic security, data validation, and power quality control. With the BESS-Set
dataset for binary classification, Random Forest achieves more than 98.50% accuracy, while
LightGBM attains more than 97.60% accuracy for multi-class classification on the resampled
data. Principal Component Analysis and feature importance show vital indicators such as
State of Charge and battery power. Secure communication is implemented using Elliptic
Curve Cryptography and a hybrid Blowfish–RSA encryption method. Data integrity is
ensured through applying anomaly detection using Z-scores and redundancy testing, and
IEEE 519-2022 power quality compliance is ensured by adaptive filtering and harmonic
analysis. Real-time feasibility is demonstrated through hardware implementation on a
PYNQ board, thus making this framework a stable and feasible option for BESS security in
smart grids.

Keywords: smart grid; distributed energy resources; anomaly detection; total harmonic
distortion; artificial neural network; RSA encryption

1. Introduction
Battery Energy Storage Systems (BESSs) are increasingly becoming part of the opera-

tion of smart grids, playing an important role in voltage stabilization, frequency control,
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and peak load management, and facilitating integration of renewable energy sources
Ref. [1]. However, as BESS infrastructure relies increasingly on IoT devices, cloud plat-
forms, and networked communication systems, its vulnerability to cyber-physical attacks
has increased exponentially. This growing reliance has resulted in a novel kind of attack
on sensitive systems, leaving critical energy infrastructure exposed to a wide range of
cybersecurity threats Ref. [2]. Cyberattacks on BESSs can be generally divided into three
main categories, each affecting system stability in distinct ways. The first category includes
data integrity attacks such as False Data Injection (FDI) and Bad Data Injection (BDI) that
maliciously corrupt critical parameters such as State of Charge (SoC), voltage levels, or
power references. The data corruption can mislead the energy management algorithms
and result in grid operation disruptions. The second category consists of Denial-of-Service
(DoS) attacks that try to saturate or disable communication channels between elements,
degrading necessary decision-making or rendering controls unresponsive. The third cat-
egory is firmware modification attacks, modifying system logic, introducing anomalous
behavior, or subverting power quality via voltage instability or harmonic distortion. These
threat categories show the diversity of the security issues that smart grids that incorporate
BESSs need to address. Although several studies have investigated anomaly detection and
intrusion detection systems for mitigating these risks, the majority of the current methods
are narrow in scope. Most of them are simply required to perform binary classification
between attack and normal types, without the level of specificity required to distinguish
between different types of cyberattacks. Furthermore, these models are often trained on
unbalanced datasets and do not deal with cryptographic security to secure communica-
tion lines. Real-time verification, which is essential for practical deployment, is rarely
considered. Here, the current study presents a systematic and applicable approach to
protect BESSs from various cyberattacks. The system combines machine learning models
for multi-class attack classification, resolves dataset imbalance using SMOTE for binary
classification, and interprets features through dimensionality reduction methods like PCA.
For protecting data transmission, a double-layer encryption strategy is implemented by
combining Elliptic Curve Cryptography (ECC) with a hybrid Blowfish–RSA algorithm.
Anomaly detection based on Z-scores and redundancy checks is employed to ensure data
integrity, while power quality is dynamically ensured as per IEEE 519-2022 standards via
adaptive filtering and harmonic monitoring. The complete design is experimented on in
real time with deployment on an edge-computing-based PYNQ-Z2 hardware to establish
the proof of feasibility within actual BESS applications. This comprehensive approach
covers the deficits in the work carried out heretofore in consolidating the detection of
attacks, secure transmission, the integrity of the system, and validation from the hardware
as one implementable solution toward increasing BESS–smart grid resilience.

2. Literature Review
Battery Energy Storage Systems (BESSs) are a crucial component of contemporary

power grids, intelligent distribution networks, and the integration of renewable energy.
Their capacity to facilitate frequency regulation, peak load management, and grid stabil-
ity renders them essential for future energy infrastructures. Nonetheless, the increasing
dependency on IoT-based control, cloud computing, and distributed architectures poses
significant cybersecurity risks. Cyber threats, such as False Data Injection attacks (FDIA),
Denial-of-Service (DoS) attacks, Man-in-the-Middle (MitM) attacks, and firmware modifi-
cations, considerably threaten the efficiency of BESSs and the stability of the grid. Multiple
studies have investigated cyberattack detection systems, secure communication strategies,
and cryptographic solutions to alleviate these risks and improve BESS resilience. The
identification of cyberattack surfaces and risk factors in BESSs has been a primary research
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subject matter. Ref. [3] introduces AI-driven intrusion detection employing clustering,
Artificial Neural Networks (ANNs) Ref. [4], and state estimation (SE) algorithms. This
study is deficient in hybrid encryption algorithms, such as AES + RSA or ECC, and lacks
real-time implementation, which would be crucial for improved security. Likewise, Ref. [5]
examines FDIA, DoS, and firmware attacks, highlighting the significance of blockchain
in maintaining data integrity. But it fails to tackle multi-class attack classification, hence
constraining its practical applicability.

The anomaly detection approaches based on state estimation, as proposed by Refs. [6,7],
enable the identification of long-term patterns in cyberattacks. However, these techniques fail
to consider multi-class cyberattack classification, which is essential for recognizing the many
attack types influencing BESS operations. Furthermore, Ref. [8] examines load-altering attacks
in Automatic Generation Control (AGC)-integrated BESSs utilizing machine-learning-based
detection methods. The study is important for grid frequency security research; nevertheless,
it lacks secure connection protocols like SSL/TLS or ECC, rendering BESS data transmis-
sions vulnerable to cyber threats. Cyberattacks on BESS operations can severely impair State
of Charge (SOC) computation, energy distribution, and overall grid stability. Refs. [9,10]
highlight the techniques employed by adversaries to manipulate BESS charge–discharge
cycles using ANN-based stealth attacks and AI-driven MitM assaults, leading to unexpected
disruptions. Although this research demonstrates the viability of adversarial AI in cyberat-
tacks, it fails to include secure key exchange protocols or encryption-based countermeasures.
Machine-learning-driven anomaly detection and intrusion detection systems (IDSs) have
been thoroughly investigated for the cybersecurity of BESSs. Comparable concerns regarding
the robustness and adaptability of AI-based classifiers under adverse conditions have also
been highlighted in the UAV domain, where obstacle and aircraft detection techniques face
challenges such as fog, low light, and motion blur Ref. [11]. Refs. [12,13] present ensemble-
learning-based detection frameworks that attain accuracy rates of 98.98% and 96.17% for FDIA
and DoS attack categorization, respectively. Nonetheless, these models are confined to binary
categorization, hence limiting their capacity to identify a broader spectrum of attack types.
Furthermore, Ref. [14] presents an AdaBoost-based model for State of Charge forecasting
aimed at cyberattack detection. The study shows a 14% false positive rate, highlighting the
necessity for enhanced accuracy and cryptographic security validation.

Conversely, Ref. [15] utilizes an autoencoder-based methodology for anomaly detec-
tion to identify stealth cyberattacks in actual BESS environments. The study, although
effective for real-time cybersecurity monitoring, is deficient in entropy analysis, Chi-square
randomness testing, and cryptographic resilience evaluation, rendering it vulnerable to
advanced attacks. Traditional AI models mostly emphasize binary anomaly detection;
however, recent advances highlight multi-class classification to address a variety of cyber
threats. Ref. [16] introduces a Two-Layer Random Forest (TLRF) model for the detection
of FDIA, replay attacks, and poisoning attacks, attaining high accuracy with real-world
datasets. However, the study excludes encryption-based safeguards, making it prone to
unwanted tampering. Despite significant advancements in threat detection, many studies
fail to adopt secure data transfer methods. Ref. [17] presents a blockchain-based security
framework that uses smart contracts to improve BESS security and reduce single points
of failure. Nevertheless, the study fails to incorporate machine-learning-based anomaly
detection, which is essential for preemptive cyberattack mitigation. Additionally, Ref. [18]
presents a robust multi-agent optimization framework designed to counteract hostile node
interference and guarantee secure operation of BESSs. FPGA-based deployment in anomaly
detection is discussed in one study that uses parallelism and programmable hardware to
provide high-speed, low-latency processing Refs.[19–21]. When it comes to identifying
anomalous patterns in massive data streams, these systems effectively support AI/ML
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models. This method is appropriate for real-time security and monitoring applications
as it maintains a balance between accuracy, throughput, and resource usage. The lack of
end-to-end encryption renders real-time data transfer susceptible to attackers. Although
cryptographic security is broadly acknowledged as essential, few researchers employ
encryption-based countermeasures. Refs. [22,23] address blockchain authentication but
do not assess hybrid encryption methods like AES + RSA or ECC. Future research in BESS
cybersecurity is expected to benefit from the integration of hybrid encryption techniques
with AI-augmented intrusion detection systems, hence facilitating comprehensive end-to-
end protection. Simultaneously, exploring lightweight encryption techniques is essential
for providing low-latency, real-time monitoring. The current literature predominantly
relies on simulated environments; future research is expected to focus on the real-world
implementation and validation of attack detection frameworks. Furthermore, integrating
BESS security within the comprehensive smart grid cybersecurity framework is crucial for
averting substantial and widespread disruptions. Despite breakthroughs in threat mod-
eling, AI-driven anomaly detection, and cryptographic techniques, significant challenges
remain, particularly in the execution of hybrid encryption, real-time attack detection, and
the evaluation of secure communication protocols. This paper presents a robust, AI-driven
framework for detecting attacks associated with cryptographic security, anomaly detection,
and real-time secure communication. The development of future technologies depends on
the effective execution of adaptive AI-driven security protocols and scalable techniques
that enhance the reliability of Battery Energy Storage Systems (BESSs) within smart grids
and renewable energy systems. This paper presents a robust, AI-driven framework for
detecting attacks associated with cryptographic security, anomaly detection, and real-time
secure communication. Progress in the future relies on the effective execution of adaptive
AI-driven security protocols and scalable solutions that enhance the reliability of BESSs
with smart grids and renewable energy systems. The overview of the proposed work
is shown in Figure 1 and addresses all the drawbacks and the highlights, and the major
contributions of this paper are as follows:

• This paper proposed a two-layer classification method to detect cyberattacks in
BESSs with an accuracy of 99.89% in binary classification with Random Forest and
99.92% in multi-class classification with LightGBM. The Random Forest model was
successfully deployed on a PYNQ board, establishing its feasibility for real-time
edge-based applications.

• Feature importance was evaluated with PCA and Random Forest and identified SoC,
battery power, voltage, and THD as important indicators of attack situations. This
allowed for effective dimensionality reduction and enhanced detection rates through
importance factor prioritization.

• A secure communication framework was developed, incorporating Elliptic Curve
Cryptography (ECC) and hybrid (Blowfish + RSA) methods for encryption of
data, ensuring both computational efficiency and effective data confidentiality for
BESS systems.

• The proposed encryption methods were validated by rigorous tests, comprising IV
uniqueness, bit-flipping resistance, replay attack mitigation, and side-channel protec-
tion. Results validated strong security against cryptographic and statistical attacks.

• Power quality was maintained in accordance with IEEE 519 requirements by adaptive
filtering and Total Harmonic Distortion monitoring. Data integrity was maintained
using anomaly scoring and redundancy checks, facilitating rapid identification of
manipulation and system abnormalities.
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Figure 1. Overview of proposed work.

To address these challenges, we utilize the BESS-Set dataset, a high-resolution bench-
mark recently developed specifically for cybersecurity research in Battery Energy Storage
Systems. It is tailored to capture both normal operations and diverse cyberattack scenarios,
including False Data Injection, Bad Data Injection, and firmware tampering. The com-
prehensive labeling of operational parameters (voltage, SoC, THD, power flows) make it
particularly suitable for developing and validating machine-learning-driven intrusion de-
tection systems. The dataset facilitates exploration of advanced hybrid detection techniques
while filling the critical empirical validation gap. The following section demonstrates the
features of the dataset and its use in the suggested methodology. While this study focuses on
the cybersecurity of Battery Energy Storage Systems (BESSs), it is important to emphasize
that such vulnerabilities are not unique to BESSs but reflect a broader challenge across IoT
ecosystems. The integration of distributed devices, cloud platforms, and edge controllers
in IoT environments exposes critical infrastructures to similar categories of attacks, includ-
ing False Data Injection, Denial-of-Service, and firmware modifications. Consequently,
new security paradigms are required that combine AI-driven threat detection with robust
cryptographic mechanisms. Recent approaches, such as blockchain-enabled cybersecurity
frameworks using Elliptic Curve Cryptography (ECC) and the black-winged kite model
Ref. [24], highlight the potential of integrating decentralized trust, lightweight cryptogra-
phy, and adaptive AI models. Our proposed framework aligns with these advancements by
integrating machine learning for multi-class attack detection with cryptographic safeguards,
thus contributing not only to BESS security but also offering insights applicable to the
wider IoT security landscape.

3. Dataset Description
The BESS-Set dataset Ref. [25] is a thoroughly organized and broad time-series dataset

developed to promote cybersecurity research in Battery Energy Storage Systems (BESSs).
The growing integration of Distributed Energy Resources (DERs) into modern smart grids
has led to increased cybersecurity concerns about energy storage components. BESS-Set
is designed to facilitate the development of robust cybersecurity solutions, encompassing
intrusion detection systems (IDSs), anomaly detection algorithms, and attack mitigation
tactics, which are essential resources for researchers and professionals. The dataset consists
of multiple CSV files, each representing a distinct operational scenario that includes both
normal system operations and various cyberattacks. The BESS-Set dataset is sampled
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at 1-second intervals, recording important operating parameters such as active power
(P), reactive power (Q), battery voltage, Total Harmonic Distortion (THD), and State of
Charge (SOC). Each data point is assigned a binary label indicating the presence of an
attack: 0 indicates normal operation, while 1 indicates the presence of a cyberattack. This
labeling schema facilitates the utilization of supervised learning methods for anomaly
and attack detection. The dataset comprises nine files classified into normal data and
diverse cyberattack scenarios. A summary of various attack types, their classifications, and
descriptions is provided in Table 1. The detailed description of each feature (column) in the
dataset is provided in Table 2. The BESS-Set dataset used in this study is simulated and
is specifically designed for research purposes. It offers high-resolution, well-labeled data
that is ideal for exploring anomaly detection and attack classification. However, it does
not fully reflect the challenges of real-world BESS installations, such as noisy sensor data,
communication delays, and hardware faults. While our results show the strong potential of
the proposed framework, validating it on real BESS testbeds will be an important step in
future work to confirm its robustness in practical conditions.

Table 1. BESS-Set: attack categories and characteristics.

Cyberattack Attack Name Type Description

Bad Data Injection

BadData_P_Exceeds P Exceeds Limits Active power setpoints exceed safe operational thresholds,
causing instability.

BadData_Q_Exceeds Q Exceeds Limits Reactive power manipulated beyond limits, affecting voltage
and power quality control.

BadData_P_Oscillations P Oscillations Active power fluctuates due to Man-in-the-Middle (MitM) at-
tack, destabilizing grid performance.

BadData_Q_Oscillations Q Oscillations Reactive power oscillations disrupt voltage control and
system balance.

False Data Injection
FalseData_P_Tampering P Tampering False active power readings mislead system operation and

response algorithms.

FDI_BDI_SOC_Tampering SOC Tampering Alters State of Charge (SOC) values, causing incorrect decisions
in battery energy management.

Firmware Modification
Firmware_Harmonics_Tampering Tampering Firmware manipulation introduces harmonic distortions, po-

tentially violating IEEE power quality standards.

Battery Voltage Tampering Voltage Tampering DC/DC converter parameters are modified, increasing the risk
of overvoltage and battery degradation.

Table 2. BESS-Set CSV column names and descriptions.

Category Column Name(s) Unit/Type Description

Battery State SoC % State of Charge of the battery, indicating energy level.
DC Measurements V_dc_bat, I_dc_bat V, A DC voltage and current at the battery terminals.

V_dc_link V Voltage of the DC link connecting battery and inverter.
AC Voltage V_a, V_b, V_c V Line voltages on phases A, B, and C.
AC Current I_a, I_b, I_c A Line currents on phases A, B, and C.
Frequency f_a, f_b, f_c Hz Frequency measurements on each AC phase.
Harmonics THD_a, THD_b, THD_c % Total Harmonic Distortion on phases A, B, and C.
Power (Battery) P_bat, Q_bat kW, kVAR Active and reactive power delivered by the battery.
Power Reference P_ref, Q_ref kW, kVAR Control system reference setpoints for active and reactive power.
Label label Categorical Classification label (e.g., normal, cyberattack type).

4. Proposed Methodologies
This section outlines the techniques and algorithms used, with a focus on balancing the

data, classifying attacks, implementing hardware, and ensuring secure communication. For
the classification component, several models including Support Vector Machines (SVMs),
Artificial Neural Networks (ANNs), TabNet, XGBoost, Random Forest, and LightGBM were
initially evaluated on the BESS-Set dataset. As detailed in the Results and Discussion section,
Random Forest achieved the best performance for binary classification (99.89% accuracy),
while LightGBM yielded the highest accuracy for multi-class classification (99.92%). These
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models were therefore selected as the most suitable for the proposed framework, as they
combine high accuracy with relatively low computational cost, making them appropriate
for real-time embedded classification on platforms such as the PYNQ-Z2. To address class
imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied to both
binary and multi-class tasks. For binary classification, oversampling was applied, while for
the multi-class LightGBM model, a hybrid resampling strategy was adopted, oversampling
minority classes using SMOTE and undersampling majority classes to achieve a balanced
training dataset of approximately 10,000 samples per class. Prior investigations in related
computer vision applications have highlighted the sensitivity of CNN-based classifiers to
dataset structure, emphasizing the need for dataset-specific optimization and validation
procedures Ref. [26]. This observation is consistent with findings showing that CNN-based
forgery detection systems exhibit substantial performance variability depending on dataset
characteristics Ref. [27], further supporting the argument that dataset dependency must be
carefully accounted for in security-oriented ML frameworks.

For secure communication, two cryptographic strategies were incorporated. Elliptic
Curve Cryptography (ECC) (ECDH + HKDF + XOR) was selected for lightweight key
agreement due to its ability to provide strong security with smaller key sizes compared to
RSA, thereby reducing computational overhead in communication scenarios. In addition, a
hybrid scheme combining Blowfish–CBC for data encryption and RSA (1024-bit) for secure
key exchange was implemented. Blowfish was chosen for its fast encryption/decryption
speed and flexible key length, while RSA ensured secure distribution of symmetric keys.
This dual approach balances efficiency and security, aligning with industrial standards for
protecting sensitive BESS operational data.

4.1. Synthetic Minority Oversampling Technique (SMOTE) for Data Balancing

An approach to mitigate class imbalance involves generating synthetic instances for
the minority class instead of merely replicating existing samples. Our original training set
was highly imbalanced, with 24.859 ‘normal’ samples versus only 3.012 attack samples.
After applying SMOTE (random_state = 42), it achieved perfect balance (24.859 samples
per class), ensuring that minority-class patterns receive equal representation during tree
construction. The algorithm operates by selecting each sample from the minority class
and determining its k-nearest neighbors inside the feature space. For each chosen minority
instance xi, one of its nearest neighbors xnn is randomly selected, and a new synthetic
sample is created along the line segment connecting these two places. This process is
mathematically represented by Equation (1), where λ is a random variable sampled from
a uniform distribution ranging from 0 to 1. This guarantees that the new data point is a
convex combination of the original sample and its neighbor, hence facilitating interpolation
between them. Random interpolation enhances the dataset by generating novel minority
samples that are not just replicas, while also facilitating a more effective representation
of the underlying data distribution. The Euclidean distance employed to ascertain the
nearest neighbors is generally computed using Equation (2), where n signifies the number
of features in the dataset. Through these mathematical formulations, SMOTE develops
various synthetic instances that assist in balancing the dataset, strengthening the training
process, and eventually resulting in more robust and unbiased machine learning models.
Smote technique process is shown in Figure 2.

xnew = xi + λ× (xnn − xi) (1)

d(xi, xnn) =

√√√√ n

∑
j=1

(xi,j − xnn,j)2 (2)



Technologies 2025, 13, 423 8 of 33

While SMOTE creates synthetic samples uniformly across the line segments between
minority class instances and their nearest neighbors, it fails to learn local data distributions.
In contrast, ADASYN generates synthetic data dynamically in areas where the minority
class is more difficult to learn (i.e., areas with more class overlap). This renders it more
efficient in cases of severe class imbalance. Moreover, Cluster-SMOTE initially clusters the
minority class and afterwards carries out SMOTE within clusters so that the synthesized
samples get improved distribution and diversity, particularly if the minority class contains
sub-clusters or sparse patterns.

Figure 2. Smote technique process.

4.2. Random Forest for Classification

Random Forest is a resilient ensemble learning technique commonly employed for
classification problems, including binary classification within the BESS dataset. It constructs
several decision trees utilizing bootstrapped subsets of the original dataset and integrates
their predictions via a majority voting process to enhance accuracy and generalization.
Every singular decision tree within the forest partitions the data according to a purity
criterion, predominantly the Gini impurity. The Gini impurity for a dataset D is computed
using Equation (3), where pi represents the proportion of occurrences in class i, and k
signifies the total number of classes. At each decision node, the algorithm randomly
chooses a subset of features instead of evaluating all available features. This not only
increases its unpredictable nature, which disrupts the correlation among the trees, but
also fortifies the ensemble’s resilience. The number of features evaluated at each split is
generally specified by Equation (4), where p represents the total number of features.

The ultimate prediction ŷ is derived by consolidating the predictions from all B
decision trees through a majority voting mechanism, as seen in Equation (5). This ensemble
method minimizes uncertainty and promotes predictive stability. Additionally, Random
Forest utilizes Out-of-Bag (OOB) error estimation, utilizing the subset of training samples
excluded from the bootstrap sample for each tree to deliver an unbiased assessment of
model performance. This eliminates the necessity for a distinct validation set and ensures
efficient model assessment. Random Forest incorporates bagging with random feature
selection, resulting in higher accuracy, diminished overfitting, and robustness, rendering it
particularly effective for classification jobs involving intricate and high-dimensional data,
such as cybersecurity monitoring of BESSs. The key hyperparameters used for Random
Forest training are summarized in Table 3. Random forest architecture is shown in Figure 3.

Gini(D) = 1−
k

∑
i=1

p2
i (3)

m =
√

p (4)

ŷ = mode{ f1(x), f2(x), . . . , fB(x)} (5)
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Table 3. Key hyperparameters used in training.

Model Hyperparameter Value (Used)

Random Forest (binary)

n_estimators 100
max_depth 10
random_state 42
preprocessing pipeline Imputer→ StandardScaler→ SMOTE
cross-validation Stratified 10-fold CV

LightGBM (multi-class)

objective multi-class
num_class set to #classes in dataset
metric multi_logloss
boosting_type gbdt
learning_rate 0.1
num_leaves 31
max_depth −1 (no limit)
seed 42
num_boost_round 100
early_stopping_rounds 10

Figure 3. Random Forest architecture.

4.3. LightGBM for Multi-Class Classification

LightGBM is a gradient boosting framework that constructs decision trees in a leaf-
wise manner with depth boundaries, intended for efficiency and speed. The model’s
prediction for an input instance x is an average of predictions from T distinct trees, as
seen in Equation (6). The learning process is directed by the minimization of a regularized
objective function that addresses prediction error and model complexity, as expressed in
Equation (7).

f (x) =
T

∑
t=1

ft(x) (6)

L =
n

∑
i=1

ℓ(yi, f (xi)) +
T

∑
t=1

Ω( ft) (7)

In each boosting iteration, LightGBM utilizes a second-order Taylor approximation of
the loss function to facilitate efficient optimization, integrating both gradient and Hessian
information. Although the derivations involve detailed gradient-based computations
(omitted here for brevity), they contribute to optimal split selection during tree construction.

For a tree with J leaves, the ideal weights are determined based on aggregated gra-
dients and Hessians from training samples. The quality of a split is assessed by a gain
metric, which reflects the improvement in the loss function when splitting a node. These
optimization steps, though mathematical in formulation, are abstracted by the LightGBM
framework during training.

We employed stratified 10-fold cross-validation to evaluate model performance. The
folds preserved class distribution and were repeated with different splits to ensure robust-
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ness. Performance metrics were reported as mean ± standard deviation across all folds.
The LightGBM training configuration, including learning rate, tree depth, and number of
boosting rounds, is listed in Table 3. LightGBM architecture is shown in Figure 4.

Figure 4. LightGBM architecture.

4.4. Principal Component Analysis (PCA) for Dimensionality Reduction

Principal Component Analysis (PCA) is a statistical approach that diminishes the
dimensionality of a dataset while preserving maximal variability. It achieves this by
converting the original characteristics into a new set of uncorrelated variables referred to as
principal components. The procedure commences with mean subtraction to center the data,
followed by the calculation of the covariance matrix of the centered data. For a dataset
X comprising n samples and p characteristics, the covariance matrix is computed using
Equation (8).

Sigma =
1

n− 1
X⊤X (8)

PCA entails conducting eigenvalue decomposition on the covariance matrix to obtain
eigenvalues λ1, λ2, . . . , λp and their corresponding eigenvectors v1, v2, . . . , vp, which fulfill
the requirement specified in Equation (9).

Σvi = λivi (9)

The eigenvectors denote the orientations of the new feature space (principal compo-
nents), whilst the eigenvalues signify the extent of variance encapsulated by each respective
component. A transformation matrix W is formed by picking the top k eigenvectors
corresponding to the biggest eigenvalues. The original dataset X is projected onto the
lower-dimensional subspace, yielding the reduced matrix Z, as seen in Equation (10).

Z = XW (10)

To evaluate the efficiency of the chosen components in capturing data variance, the
explained variance ratio (EVR) is calculated, which is the ratio of the sum of the top k
eigenvalues to the total sum of all p eigenvalues. EVR is defined as the ratio of the sum
of the first k eigenvalues λi to the sum of all p eigenvalues λj. This ratio aids in figuring
out how many components should be kept in order to ensure that the dimensionality
reduction preserves the important data from the original dataset.PCA architecture is shown
in Figure 5.
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Figure 5. PCA for dimensionality reduction.

4.5. Elliptic-Curve-Cryptography-Based Encryption

Elliptic Curve Cryptography (ECC) relies on the algebraic framework of elliptic curves
constructed over finite fields. An elliptic curve is defined by a short Weierstrass form
as presented in Equation (11) accompanied with the discriminant condition specified in
Equation (12), which assures the curve’s nonsingularity:

y2 = x3 + ax + b, (11)

∆ = 4a3 + 27b2 ̸= 0, (12)

In a finite field Fp (where p is a prime), the collection of points (x, y), together with a
point at infinity, defines an abelian group under a specified addition operation. For the two
distinct points P = (x1, y1) and Q = (x2, y2), the slope λ is determined using Equation (13),
and the resultant point R = P + Q = (x3, y3) is derived using Equations (14) and (15).

λ =
y2 − y1

x2 − x1
mod p, (13)

x3 = λ2 − x1 − x2 mod p, (14)

y3 = λ(x1 − x3)− y1 mod p. (15)

If the two points are the same, i.e., P = Q, the process is called point doubling, and
the slope λ is computed using Equation (16), with the coordinates of the doubled point
given by Equations (17) and (18).

λ =
3x2

1 + a
2y1

mod p, (16)

x3 = λ2 − 2x1 mod p, (17)

y3 = λ(x1 − x3)− y1 mod p. (18)

Key generation in ECC involves selecting a private key d uniformly at random from
the interval [1, n− 1], where n is the order of a predefined base point G. The corresponding
public key is calculated using Equation (19).

Q = d · G, (19)
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Scalar multiplication is executed within the elliptic curve group. The security of ECC
depends on the complexity of the Elliptic Curve Discrete Logarithm Problem (ECDLP),
making it computationally impractical to determine d from the known values of Q and G.
In an ECC-based key exchange protocol, two parties develop a shared secret through the
combination of their private and public keys, such that S = d1 · Q2 = d1d2 · G = d2 · Q1,
which is then processed via a key derivation function (e.g., HKDF) to produce symmetric
encryption keys. This secure communication protocol is illustrated in Figure 6, depicting
an ECC-based key exchange. Additionally, Figure 7 illustrates the full encryption flow
of the modified ECC scheme, showcasing each phase from key generation to encryption
and decryption. This efficient mathematical framework makes ECC a secure choice for
cryptographic applications. The modified ECC algorithm is explained in Algorithm 1.

Figure 6. ECC protocol: Secure communication using ECDH key exchange.

Figure 7. Encryption numerical order. Flow of modified ECC.
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Algorithm 1 Modified ECC encryption.

Require: Plaintext data D to be encrypted, Receiver’s public key Kpub
Ensure: Encrypted data ED, Decrypted data D

1: Key Generation:
2: Generate Receiver’s ECC key pair: (Kpriv, Kpub)

3: Generate Sender’s ECC key pair: (K′priv, K′pub)

4: Encryption Process:
5: Compute shared secret: S = ECDH(K′priv, Kpub)

6: Derive symmetric key Ks from S using a key derivation function (KDF)
7: Encrypt data D using Ks to get ED
8: Secure Transmission:
9: Transmit ED and K′pub to Receiver

10: Decryption Process:
11: Compute shared secret: S = ECDH(Kpriv, K′pub)

12: Derive symmetric key Ks using the same KDF
13: Decrypt ED using Ks to retrieve D
14: Verify confidentiality and integrity during transmission and storage
15: Display “ECC-Based Encryption and Decryption Process Completed”

4.6. Modified Hybrid Encryption Using Blowfish and RSA

The proposed hybrid encryption approach combines symmetric and asymmetric
cryptographic algorithms to achieve both efficiency and security. Let P signify the plaintext
data desired for transmission, KB symbolize the Blowfish secret key (448 bits), and C the
resultant ciphertext.

The plaintext is initially encrypted with the Blowfish technique, known for its
speed and effectiveness in symmetric encryption. The encrypted output is provided
by Equation (20).

C = EB(P, KB) (20)

where EB denotes the Blowfish encryption function.
Following this, the Blowfish key KB itself must be securely transmitted. For this pur-

pose, RSA public key encryption is employed. In RSA, a pair of keys is generated: a public
key (e, N) and a private key (d, N). The modulus N is computed as the product of two large
primes p and q, i.e., N = p× q, and the totient function is given by ϕ(N) = (p− 1)(q− 1).
The public exponent e is chosen such that 1 < e < ϕ(N) and gcd(e, ϕ(N)) = 1. The private
exponent d is calculated to satisfy the modular inverse relation shown in Equation (21).

d× e mod ϕ(N) = 1 (21)

Using the RSA public key, the symmetric key KB is encrypted as described in
Equation (22):

Kencrypted
B = Ke

B mod N (22)

The encrypted message comprises the ciphertext and the RSA-encrypted symmetric
key, transmitted together as a pair, as seen in Equation (23).(

C, Kencrypted
B

)
(23)

Upon receiving it, the recipient initiates the decryption process by obtaining the
Blowfish key via their RSA private key, as seen in Equation (24).

KB = (Kencrypted
B )d mod N (24)
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Upon retrieval of the original symmetric key, the ciphertext is decoded via the Blowfish
decryption function, giving the original plaintext P. In the equation P = DB(C, KB), DB

denotes the Blowfish decryption function.
The comprehensive encryption process of this hybrid system is illustrated in Figure 8,

which shows the integration of symmetric and asymmetric methods for secure communica-
tion.Hybrid Encryption is explained in Algorithm 2.

Figure 8. Encryption flow of proposed hybrid encryption (Blowfish + RSA).

4.7. Authentication Techniques

In addition to the encryption algorithm, authentication protocols were added to further
protect data integrity. Digital signatures were employed with RSA, which offered a way
to ensure that the data was not modified during transmission. Concurrently, HMAC
(Hash-Based Message Authentication Code) was used to authenticate message origin and
guarantee that any attempt to tamper with the ciphertext could be detected with certainty.
The verification process established that both HMAC and the digital signature always
cleared the integrity checks, thus reaffirming the reliability of the data transfer process.

Algorithm 2 Hybrid encryption using Blowfish and RSA

Require: Plaintext P
Ensure: Ciphertext C, Encrypted key EKb

▷ Symmetric Key Generation
1: Generate Blowfish key Kb ∈ {0, 1}448

▷ RSA Key Generation
2: Choose large primes p, q
3: Compute modulus N ← p · q
4: Compute ϕ(N)← (p− 1)(q− 1)
5: Choose e such that gcd(e, ϕ(N)) = 1
6: Compute d such that e · d ≡ 1 (mod ϕ(N))
7: Public key← (e, N), Private key← (d, N)

▷ Encryption
8: Encrypt plaintext: C ← BKb(P)
9: Encrypt key: EKb ← Ke

b mod N
▷ Transmission

10: Transmit tuple (C, EKb)
▷ Decryption

11: Receive (C, EKb)

12: Decrypt key: Kb ← Ed
Kb

mod N
13: Decrypt ciphertext: P← B−1

Kb
(C)

return Plaintext P
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4.8. Integration of Machine Learning and Cryptographic Modules

During feature selection based on Principal Component Analysis (PCA), factors like
State of Charge (SoC), Total Harmonic Distortion (THD), and DC-link voltage (Vdcl ink)
were found to be significantly impactful for anomaly classification. These are variables,
because of their sensitive nature in the monitoring of the functioning state of the Battery
Energy Storage System (BESS), that should be kept secure from tampering, interception,
or misuse. To meet these security needs, our design uses a modular integration approach
where machine learning and crypto pieces operate in series. The first step involves training
and evaluation of classification models like LightGBM and Random Forest on plaintext
data. This is done to maintain complete interpretability and achieve the best possible model
performance with no interference due to encryption artifacts. Once classified, it provides
outputs like predicted labels or diagnostic anomalies. The results are treated securely by
the cryptographic module. The module makes use of two main schemes:

• Elliptic Curve Cryptography (ECC): Light asymmetric encryption for secure transmis-
sion in resource-starved environments.

• Hybrid Encryption (Blowfish + RSA): Merges symmetric encryption (Blowfish) for
data protection at high speeds with RSA to securely pass the encryption keys.

By delaying encryption until after the machine learning operation, our solution main-
tains model effectiveness without compromising strong security during data storage or
transfer. Flexible deployment is made possible across varied operational scenarios, adopt-
ing ECC for embedded or edge deployments and hybrid cryptography for cloud or high-
throughput environments. The concept of adaptive human–machine interfaces has been
successfully explored in embedded systems, suggesting potential extensions of similar
interaction paradigms for real-time BESS control applications Ref. [28].

5. Results and Discussion
The research data was obtained from the BESS-Set dataset with the objective of identi-

fying cyberattacks via machine learning while maintaining the confidentiality of data by
using encryption techniques. Significantly, the classification models only process unen-
crypted data to maintain complete access to features and guarantee the best model accuracy.
Encryption is only used after classification, protecting sensitive results upon storage or
transmission. This division guarantees strong analytic performance while protecting the
system outputs. Section 5.1 addresses attack categorization, with Section 5.1.1 devoted to bi-
nary classification separating normal from anomalous conditions and Section 5.1.2 address-
ing multi-class classification, detecting particular categories of cyberattacks. Section 5.1.3
reports the hardware implementation, where the top performer model is executed on
the PYNQ-Z2 edge platform, demonstrating its performance under real-time conditions.
Section 5.2 includes Feature Analysis and Section 5.3 includes Adversarial Attack analysis.
Section 5.4 introduces the implementation of encryption methods for security in data, an-
alyzes the strength and overhead of the implemented encryption algorithm. Section 5.5
includes another security analysis of this combination. Section 5.6 discusses power qual-
ity and harmonics, wherein we analyze how attacks and conditions influence electrical
parameters in the BESS.

5.1. Attack Classification

The attack classification section of the proposed work is designed to accurately
identify and categorize cyberattacks targeting BESSs. It employs supervised machine
learning techniques to distinguish malicious activities across both binary and multi-class
classification scenarios.
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5.1.1. Binary Classification

Binary classification is a supervised learning method used to classify data into two
distinct classes, e.g., attack or normal. The performance of various algorithms, i.e., SVM,
ANN, Tabnet, XG Boost, and Random Forest, is shown in Table 4, whereas their confusion
matrices are shown in Figure 9. Among all the models, on the held-out test set (20% of data),
the Random Forest attained an overall accuracy of 99.89% because of its ability to manage
extensive feature sets and prevent overfitting. XGBoost achieved an accuracy of 99.38%
with gradient boosting to handle complex data patterns. The Artificial Neural Network
(ANN) reached an accuracy of 97.09% by the identification of complex patterns, requiring
extensive hyperparameter modification. The SVM exhibited strong performance with high-
dimensional data, achieving an accuracy of 97.4%, but its computational cost restricted
its capacity to handle larger datasets. Furthermore, other techniques, including TabNet,
were also tested. Among all the approaches, Random Forest yielded the highest accuracy
of 99.89% and F1-score of 99.94% among all tested models, indicating its superior balance
between precision and recall. By aggregating predictions from several trees (bagging), it
effectively reduces variance and overfitting on the limited, structured BESS data, leading
to stable classification. Its precision, 99.95%, and recall, 99.93%, reflect Random Forest’s
ability to both minimize false alarms and detect nearly all attack instances. To ensure
robustness and evaluate the stability of the model, a k-fold cross-validation (with k = 10)
was conducted, computing the mean and standard deviation of key classification metrics
such as accuracy, precision, recall, and F1-score. The performance of ML models, including
Random Forest, XGBoost, and SVM, compared to DL models like ANN and Tabnet in the
present study, is mostly due to the structured and limited size of the BESS data, allowing
traditional ML models to effectively identify patterns without the necessity for large-scale
data, in contrast to DL models that perform better with extensive data.

Figure 9. Confusion matrix for binary classification.
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Table 4. Performance metrics for binary classification.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

XG Boost 99.38 99.94 99.93 99.91
SVM 97.40 98.95 97.50 98.00
ANN 97.09 97.00 95.00 98.00

Tabnet 96.18 97.18 96.18 96.43
Random Forest 99.89 99.95 99.93 99.94

5.1.2. Multi-Class Classification

Multi-class classification was employed to categorize eight attack types (see Table 5),
plus one ‘normal’ class, for a total of nine classes. The performance of different models,
including LightGBM, Random Forest, Cat Boost, and ANN, is shown in Table 5 and their
confusion matrices are shown in Figure 10. Among the models, on the held-out test set (20%
of data) LightGBM attained an accuracy of 99.92% and a 99.96% F1-score, outperforming
other gradient-boosted and ensemble methods in distinguishing between multiple attack
types, owing to its efficient management of extensive feature sets and accelerated training
speed. It focuses on leaf-wise tree construction which splits the most error-prone regions,
enabling finer discrimination between overlapping attack classes with fewer iterations.
LightGBM delivers fast convergence and precise class separation, as evidenced by its
precision of 99.95% and recall of 99.97%. A k-fold cross-validation (k = 10) was employed
to ensure balanced representation of all classes across folds. The ANN effectively identified
complex patterns among features; it required more comprehensive data for maximum
performance. The Random Forest algorithm achieved commendable classification accuracy,
although it showed less ability to distinguish between overlapping assault types. Cat Boost
(98.07%) provided good results by using ensemble methods to reduce variance and provide
stability. Model choice ultimately comes down to making trade-offs among accuracy,
interpretability, and computation. Overall, all models were fine, but LightGBM was the
best as it handled the structure of the data flawlessly, whereas ANN, though less accurate,
still demonstrated its effectiveness in learning sophisticated features.

Figure 10. Confusion matrix for multi-class classification.
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Table 5. Performance metrics for multi-class classification.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

ANN 98.53 95.00 98.00 96.00
Random Forest 99.58 99.67 99.90 99.78

Cat Boost 98.07 99.00 98.00 98.00
Light GBM 99.92 99.95 99.97 99.96

5.1.3. Hardware Implementation of ML-Model-Based Binary Classification on in PYNQ
Z2 Board

To evaluate the practical feasibility of our proposed Random Forest model, we de-
ployed it on an Xilinx Zynq-7000 SoC (ARM Cortex-A9 @ 650 MHz, 512 MB RAM) using
the PYNQ-Z2 edge computing platform, as illustrated in Figure 11. The model comprised
100 decision trees, each limited to a maximum depth of 10. Each tree occupied approxi-
mately 20 KB, estimated based on the number of nodes per tree and the storage required
for node-specific parameters. A full binary tree of depth 10 contained up to 1023 nodes;
assuming 12 bytes per node (for feature index, threshold, and output value), the total mem-
ory footprint per tree was approximately 12 KB, with the remaining 8 KB accounting for
structural and buffer overhead. This sizing was profiled using Xilinx Vivado HLS and veri-
fied using LightGBM’s model_size() function, with an accepted margin of error of ±10%.
The dataset consisted of 34,903 instances across 21 features, which were preprocessed and
split into training and testing subsets. Following dimensionality reduction to five principal
components, SMOTE was applied to the training data, increasing the sample size to 50,000.
Training the Random Forest model on this resampled dataset took approximately 50 s, while
inference on 10,000 test samples was completed in 0.7 s. The PYNQ-Z2 consumed 2.8 W in
the idle state and 3.6 W during Random Forest inference under full load. This marginal
increase confirms the feasibility of deploying the framework on resource-constrained edge
devices without excessive energy overhead. These results confirm the suitability of Random
Forest classifiers for deployment on embedded systems with constrained resources. Future
work will explore FPGA-accelerated implementations exploiting parallelism, pipelining,
and hardware-aware optimizations to further enhance latency and energy efficiency for
real-time BESS-integrated smart metering systems. Related research on compressed neural
architectures implemented on edge platforms has demonstrated the feasibility of deploying
efficient models in real-time, resource-limited scenarios.

Figure 11. Machine learning model on PYNQ board.

5.2. Feature Analysis

Feature analysis is used to analyze the impact of various variables on identifying
cyberattacks within the BESS system. This study used statistical and graphical techniques to
examine the attributes, enhancing the identification of the most important factors affecting
attack detection. PCA was utilized to describe data distribution and reduce dimensionality.
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Figure 12 differentiates attack and normal conditions. The instances of attack data indicate
anomalies in specific major components. Conversely, normal instances show a linear
trend, signifying stable system behaviour. This different division confirms the existence
of trends in cyberattacks, validating the usefulness of the selected features. The analysis
of all features is shown in Figure 13. The importance of the features is evaluated using
the Random Forest algorithm. The five most critical features influencing attack detection
are as follows: State of Charge (SoC), which is highly vulnerable to power fluctuations
and firmware intrusions; P_bat (Battery Power): Demonstrates fluctuations during BDI
and FDI attacks; V_dc_link: Indicates voltage irregularities due to FDI attacks; Total
Harmonic Distortion (THD_a): Influenced by firmware modifications; I_dc_bat (battery
current): Shows irregular shutdowns in over-limit conditions. These variables have strong
correlations with attack vectors, hence proving their importance in classification. Figure 14a
is employed to identify feature correlations. Large positive correlations between P_bat
and P_ref are noted, indicating their coordinated behaviour under standard conditions.
However, attack scenarios disrupt these relationships, emphasizing feature disturbances
during security exposures. Feature analysis indicates that SoC and P_bat exhibit greater
vulnerability to anomalies. Therefore, they are regarded as vital features for monitoring
cyberattacks, as illustrated in Figure 14b, improving the accuracy of classification models.

Figure 12. PCA.

Figure 13. Analysis of all distinct features.
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Figure 14. (a) Feature correlation matrix. (b) Feature analysis using Random Forest.

5.3. Robustness Against Adversarial Attacks

In addition to assessing our machine learning models’ performances with clean data,
we also evaluated how resilient they were against adversarial attacks. A major challenge in
adversarial machine learning is the introduction of minor perturbations to the input data in
order to trick the model into producing inaccurate predictions. The effectiveness of Random
Forest, LightGBM, CatBoost, and ANN under the influence of Projected Gradient Descent
(PGD) and Fast Gradient Sign Method (FGSM) attacks is thoroughly examined in this
section. At different epsilon values (perturbation levels of 0.01, 0.05, and 0.1), both binary
and multi-class classification tasks were taken into consideration. Model performance under
clean and adversarial settings for both binary classification and multi-class classification is
shown in Tables 6 and 7. Clean data performance: The models performed extremely well on
clean, undisturbed data. The best results were obtained by Random Forest and LightGBM,
both of which achieved >99% accuracy. Superior precision, recall, and F1-score findings
demonstrated Random Forest’s ideal balance for classification tasks. With an accuracy of
97.68%, ANN outperformed CatBoost and ANN in comparison, indicating that its simpler
architecture makes it vulnerable, particularly when dealing with intricate data patterns.
FGSM and PGD attack performance (epsilon = 0.01): All models saw some performance
degradation at low perturbation (epsilon = 0.01), but Random Forest and LightGBM held
up the best. Both FGSM and PGD attacks did not affect Random Forest’s accuracy, which
remained at 95.69%. With an accuracy of 94.72% under FGSM and 94.80% under PGD,
LightGBM displayed a comparable drop. With 96.35% accuracy under FGSM and 96.94%
accuracy under PGD, CatBoost demonstrated a stronger defense against the attacks. On
the other hand, ANN saw a more pronounced drop, yet maintained an accuracy of 97.42%.

FGSM and PGD attack performance (epsilon = 0.05): All models showed a significant
drop in accuracy with a mild disturbance (epsilon = 0.05). Under FGSM and PGD, Random
Forest fell to 93.93% and 95.03%, respectively. CatBoost dropped to 88.96% accuracy under
FGSM, while LightGBM had a steep decline to 85.09% accuracy. With accuracy declining to
95.02% under FGSM and 95.01% under PGD, ANN’s performance was much worse. All
models likewise saw a decline in F1-scores, with Random Forest continuing to have the
highest F1-score at 0.8049.

Table 6. Model performance under clean and adversarial settings for binary classification.

Model Attack Eps Accuracy Precision Recall F1-Score

Random Forest clean 0 0.9981 0.9921 0.9984 0.9952
XGBoost clean 0 0.9984 0.9968 0.9950 0.9959
LightGBM clean 0 0.9994 0.9991 0.9979 0.9985
SVM clean 0 0.9558 0.8552 0.9735 0.9021

Random Forest FGSM_surrogate 0.01 0.9518 0.9253 0.8096 0.8557
Random Forest PGD_surrogate 0.01 0.9518 0.9253 0.8096 0.8557
XGBoost FGSM_surrogate 0.01 0.9185 0.8573 0.6619 0.7130
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Table 6. Cont.

Model Attack Eps Accuracy Precision Recall F1-Score

XGBoost PGD_surrogate 0.01 0.9172 0.8520 0.6571 0.7072
LightGBM FGSM_surrogate 0.01 0.9501 0.9154 0.8086 0.8518
LightGBM PGD_surrogate 0.01 0.9502 0.9156 0.8093 0.8523
SVM FGSM_surrogate 0.01 0.9558 0.8552 0.9735 0.9021
SVM PGD_surrogate 0.01 0.9558 0.8552 0.9735 0.9021

Random Forest FGSM_surrogate 0.05 0.9472 0.9054 0.8012 0.8433
Random Forest PGD_surrogate 0.05 0.9488 0.9100 0.8061 0.8483
XGBoost FGSM_surrogate 0.05 0.7576 0.5389 0.5653 0.5392
XGBoost PGD_surrogate 0.05 0.7655 0.5270 0.5418 0.5270
LightGBM FGSM_surrogate 0.05 0.7852 0.6017 0.6852 0.6152
LightGBM PGD_surrogate 0.05 0.7939 0.6075 0.6907 0.6232
SVM FGSM_surrogate 0.05 0.9512 0.8467 0.9592 0.8915
SVM PGD_surrogate 0.05 0.9535 0.8502 0.9704 0.8975

Random Forest FGSM_surrogate 0.1 0.9221 0.8471 0.6949 0.7433
Random Forest PGD_surrogate 0.1 0.9107 0.7852 0.6850 0.7206
XGBoost FGSM_surrogate 0.1 0.7623 0.5256 0.5400 0.5249
XGBoost PGD_surrogate 0.1 0.7830 0.5318 0.5446 0.5339
LightGBM FGSM_surrogate 0.1 0.7702 0.6410 0.8123 0.6519
LightGBM PGD_surrogate 0.1 0.8080 0.6553 0.8095 0.6799
SVM FGSM_surrogate 0.1 0.9346 0.8177 0.8857 0.8469
SVM PGD_surrogate 0.1 0.9357 0.8202 0.8881 0.8495

FGSM and PGD attack performance (epsilon = 0.1): The models’ performances de-
teriorated significantly more with strong perturbation (epsilon = 0.1). Random Forest
declined to 90.93% accuracy under FGSM and 92.19% accuracy under PGD. The accuracy
of LightGBM drastically dropped, falling to 85.94% under FGSM and 83.07% under PGD.
CatBoost’s accuracy dropped to 89.71% under FGSM and 86.25% under PGD. With accuracy
falling to 74.28% under FGSM and 74.23% under PGD, ANN had the highest vulnerability,
underscoring its vulnerability to adversarial perturbations. With good precision and recall,
Random Forest proved to be the most resilient model, retaining high accuracy and F1-scores
even in the face of intense adversarial perturbations. This makes it extremely dependable
in adversarial settings. While both LightGBM and CatBoost demonstrated respectable
resistance, LightGBM’s performance declined more noticeably at epsilon = 0.1. With signif-
icant accuracy decreases at all perturbation levels, ANN was the most susceptible model
to adversarial attacks, despite being efficient in clean environments. According to the
investigation, ANN is inappropriate in adversarial situations, Random Forest is the most
resistant against adversarial attacks, while LightGBM and CatBoost are less robust.

Table 7. Model performance under clean and adversarial settings (macro F1-score) for multi-
class classification.

Model Attack Eps Accuracy Precision Recall Macro-F1

Random Forest clean 0 0.9994 0.9985 0.9985 0.9985
LightGBM clean 0 0.9994 0.9991 0.9979 0.9985
CatBoost clean 0 0.9986 0.9946 0.9980 0.9963
ANN clean 0 0.9768 0.9120 0.9858 0.9447

Random Forest FGSM_surrogate 0.01 0.9569 0.9367 0.8288 0.8729
Random Forest PGD_surrogate 0.01 0.9569 0.9373 0.8282 0.8727
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Table 7. Cont.

Model Attack Eps Accuracy Precision Recall Macro-F1

LightGBM FGSM_surrogate 0.01 0.9472 0.8888 0.8198 0.8499
LightGBM PGD_surrogate 0.01 0.9480 0.8929 0.8203 0.8517
CatBoost FGSM_surrogate 0.01 0.9635 0.9334 0.8693 0.8980
CatBoost PGD_surrogate 0.01 0.9694 0.9481 0.8877 0.9151
ANN FGSM_surrogate 0.01 0.9742 0.9071 0.9773 0.9384
ANN PGD_surrogate 0.01 0.9742 0.9071 0.9773 0.9384

Random Forest FGSM_surrogate 0.05 0.9393 0.9125 0.7489 0.8049
Random Forest PGD_surrogate 0.05 0.9503 0.9658 0.7743 0.8391
LightGBM FGSM_surrogate 0.05 0.8509 0.6617 0.7338 0.6861
LightGBM PGD_surrogate 0.05 0.8307 0.6417 0.7253 0.6653
CatBoost FGSM_surrogate 0.05 0.8896 0.7251 0.7928 0.7520
CatBoost PGD_surrogate 0.05 0.8856 0.7192 0.7947 0.7480
ANN FGSM_surrogate 0.05 0.9502 0.8448 0.9563 0.8893
ANN PGD_surrogate 0.05 0.9499 0.8443 0.9550 0.8885

Random Forest FGSM_surrogate 0.1 0.9093 0.8426 0.6101 0.6518
Random Forest PGD_surrogate 0.1 0.9219 0.9466 0.6423 0.6998
LightGBM FGSM_surrogate 0.1 0.8594 0.7062 0.8733 0.7468
LightGBM PGD_surrogate 0.1 0.8581 0.7040 0.8685 0.7440
CatBoost FGSM_surrogate 0.1 0.8971 0.7343 0.7492 0.7414
CatBoost PGD_surrogate 0.1 0.8625 0.6814 0.7595 0.7086
ANN FGSM_surrogate 0.1 0.7428 0.6288 0.7986 0.6285
ANN PGD_surrogate 0.1 0.7423 0.6262 0.7913 0.6259

5.4. Encryption Framework

Data encryption was implemented to protect critical operational data, including
State of Charge, voltage, and thermal metrics, during transmission between SCADA,
BESS, inverters, and battery modules, therefore reducing cyber-physical threats such as
grid destabilization and false command injection. In line with industrial standards (e.g.,
IEC 62443, NIST), two encryption techniques were incorporated to provide safe transfer
of data within the BESS framework. The hybrid encryption approach integrates Blowfish
data encryption and RSA for safe key exchange. Elliptic Curve Cryptography (ECC) was
used to deliver encryption using reduced key sizes, providing data security with lowered
computational requirements.

5.4.1. Elliptic-Curve-Cryptography-Based Approach

This is an asymmetric cryptographic scheme whose security depends on the mathe-
matical complexity of the Elliptic Curve Discrete Logarithm Problem (ECDLP). This method
employs the Elliptic Curve Diffie–Hellman (ECDH) for secure key exchange, in which
both the sender and receiver generate their ECC key pairs. Following the key exchange, a
shared secret is produced by ECDH using an HMAC-based key derivation function (HKDF)
that uses HMAC-SHA256. The resulting symmetric key is used in an XOR encryption
technique to encrypt the plaintext data. The SoC feature was chosen as representative data
to demonstrate the tests. Figure 15 shows the comparison of original and encrypted data.
Figure 16a illustrates the behaviour of the encryption process when a random salt is applied,
ensuring that encrypting the same value multiple times produces distinct ciphertexts and
displays the hashed encrypted values of the State of Charge (SoC) parameter across various
iterations, showcasing the impact of entropy introduced by the salt. This non-deterministic
nature of the encryption process demonstrates that each iteration produces a unique hashed
result, even with the same input. This feature is crucial for cryptographic security, as it
inhibits pattern recognition efforts and ensures that ciphertexts generated from identical
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plaintext values stay unpredictable. The wide interquartile range in Figure 16b confirms
that the ciphertext demonstrates unpredictability. The encrypted SoC values depicted in
Figure 17a reveal that the ciphertext exhibits unpredictability. A uniform distribution of
ciphertext values is essential for protection against frequency analysis and other statistical
assaults. Figure 17b demonstrates the lack of bias towards any particular character, thereby
validating that the ciphertext is uniformly random.

Figure 15. SoC: Comparison of original vs. encrypted data of ECC.

Figure 16. (a) Repeated encryption hash scatter for SoC. (b) Box plot of hashed encrypted values
of SoC.

Figure 17. (a) Histogram of hashed encrypted values for SoC. (b) Frequency analysis of ciphertext
characters for SoC.

Security Evaluation for ECC Method

Salt Randomness Analysis: The salt randomness test gathered and analyzed
1000 distinct salt values from 20 data columns. The flat distribution in Figure 18a con-
firms proper random number generation for salt values, making pre-computation attacks
infeasible. There is uniform distribution across all possible byte values (0–255). The uniform
distribution evident in the salt byte distribution signifies robust randomness in salt creation.
The lack of patterns in Figure 18b confirms independence between generated salts, ensuring
unique encryption contexts. The entropy heatmap display reveals no identifiable trends
among the initial 50 salts, indicating the successful application of the random number
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generator utilized for salt generation. Let S be the set of generated salts, where each salt
s ∈ S is a 16-byte value. The entropy H(S) can be calculated using Equation (25), where
p(x) is the probability of byte value x occurring in the salt distribution.

H(S) = −∑
x

p(x) log2 p(x) (25)

Figure 18. (a) Salt byte distribution. (b) Salt byte pattern.

Bit-Flipping Resistance: The bit-flipping test proved strong integrity protection, with
no successful decryptions following the modification of individual bits (0 valid decryptions
out of 50 attempts). This represents the execution of effective resistance against bit ma-
nipulation attacks, matching the avalanche effect principle of safe cryptographic systems.
For any ciphertext C and its modified version C′, where Hamming distance H(C, C′) = 1:
Decryption(C′) ̸= Decryption(C).

Reversibility Analysis: The reversibility test demonstrated exact reconstruction of
the original values: Mean decryption error: 0.000000; standard deviation: 0.000000. This
implies perfect encryption–decryption processes, necessary for preserving data integrity in
important applications.

Malleability Assessment: The malleability test findings indicate robust resistance to
regulated alterations: Success rate by bit position: [0.0, 0.0, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0]. Aver-
age success rate: 0.001. A small 0.1% success rate for malleability attacks indicates strong
semantic security. Figure 19a exhibits a minimal success rate; a small 0.1% success rate for
malleability attacks indicates strong semantic security across all bit locations. Minor fluctu-
ations in success rates (≤0.01) demonstrate continuous opposition to multi-bit alterations.

Side-Channel Analysis: Timing analysis in Figure 19b indicates a negligible link
between ciphertext length and processing duration. To assess the encryption scheme’s
robustness against timing-based side-channel attacks, we conducted an empirical timing
analysis on the ECC-based decryption process using ciphertexts of varying lengths. A total
of 1000 decryption operations were executed, and decryption durations were recorded.
The mean decryption time was 0.01234 s, with a standard deviation of 0.00123 s. The
Pearson correlation coefficient between ciphertext length and decryption time was r = 0.015
(p = 0.68), indicating no statistically significant relationship between input size and
processing time. To further validate this result, a bootstrap resampling (n = 10,000)
was performed, yielding a 95% confidence interval of [−0.023, +0.054], which includes
zero, confirming a lack of consistent timing correlation. These findings suggest that the
ECC-based encryption demonstrates empirical resistance to timing-based side-channel
attacks under the tested conditions. However, we acknowledge that formal timing-constant
implementations and hardware-level measurements would be necessary for comprehensive
side-channel resistance validation.
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Replay Attack Resistance: Absolute resistance to replay attacks was demonstrated
by the absence of duplicate ciphertexts and the generation of unique ciphertexts for each
encryption operation. For any two plaintexts p1, p2 encrypted under the same key k:

Encrypt(p1, k, s1) ̸= Encrypt(p2, k, s2) (26)

where s1, s2 are distinct salts.
The scheme’s resistance against attacks, such as frequency analysis, chosen-plaintext

attacks, and side-channel attacks, validates the strength of the ECC and its related key
generation and encryption elements. The statistical distribution of the ciphertext, which
nearly approximates a uniform distribution, further confirms its resistance to cryptanalytic
attacks. The validation of key exchange, along with consistent encryption and decryption,
verifies that the chosen cryptographic components are specifically designed for safe data
transmission. These results highlight the possibility of using such methods in practical and
secure communication systems.

Figure 19. (a) Malleability test: Impact of bit modifications on decryption success. (b) Correlation
between ciphertext length and decryption time.

5.4.2. Hybrid Encryption-Based Approach

A hybrid encryption method was used, combining the symmetric Blowfish technique
for data encryption with the asymmetric RSA algorithm for safe key exchange. The
encryption process begins with generating a 1024-bit RSA key pair, including a private key
and a public key. These keys facilitate the safe transmission of the Blowfish encryption key,
preventing unauthorized access. The RSA keys are managed independently to facilitate
effective key management, ensuring the encryption process’s confidentiality and security.
Following the RSA key generation, a 448-bit Blowfish key, the maximum key length
supported by the technique, is generated randomly and securely stored. The BESS data
is encrypted for protection. Blowfish encryption is employed in Cipher Block Chaining
(CBC) mode to incorporate randomization and prevent identical plaintext blocks from
producing the same ciphertext. An Initialization Vector (IV) is generated and appended
to the encrypted data, ensuring that each encryption instance is unique and resistant to
cryptanalysis. To increase security, the Blowfish key is encrypted with RSA, utilizing the
public key for encryption. The encrypted Blowfish key is stored independently from the
data, verifying that decryption is possible with access to the associated RSA private key.
The segmentation of encryption components improves the overall security framework,
as an attacker would need the encrypted data and the RSA private key to decrypt the
information. Upon finalizing encryption, the modified data is preserved, maintaining the
original structure while replacing it with its encrypted equivalents.

The encryption process was tested by several comparisons: Figure 20 depicts the
variation between encrypted and plaintext data values, illustrating the effect of encryption
on data representation. Figure 21 shows the distribution of encrypted and original values.
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To evaluate the integrity of the decryption process, Figures 22 and 23 compare the State of
Charge (SoC) values of the encrypted and original data. The implementation of this method
provides many advantages, as Blowfish, a symmetric encryption technique, performs rapid
encryption and decryption, making it computationally efficient for extensive data. The RSA
method used for key exchange reduces dangers related to key transmission and storage.
This method ensures that decryption is impossible without the RSA private key, even if an
attacker obtains the encrypted data. This hybrid encryption method, using both Blowfish
and the RSA algorithm, effectively secures BESS data against cyber threats.

Figure 20. SoC: Encrypted vs. normal (hybrid encryption).

Figure 21. Encrypted vs. normal (hybrid encryption).

Figure 22. Histogram of SoC: Encrypted vs. normal (hybrid encryption).
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Figure 23. SoC: Encrypted vs. normal data of hybrid encryption.

Security Evaluation for Proposed Hybrid Encryption Method

The key length test is an essential factor in evaluating the security efficiency of
encryption algorithms, as longer keys provide superior resistance to brute-force attacks by
exponentially increasing the computational effort necessary for key extraction. A hybrid
encryption system uses a 1024-bit RSA key for safe key exchange and a 448-bit Blowfish
key for symmetric encryption. Figure 24a illustrates that RSA’s extended key length
guarantees strong defense against key factoring attacks, converting it into being suitable for
asymmetric encryption, but Blowfish’s 448-bit key offers an ideal balance between security
and computational efficiency. The validation of these key lengths confirms compliance
with industry security standards and that our encryption scheme remains strong against
cryptanalytic threats and assures that it can achieve secure data transmission.

Figure 24. (a) Key length comparison between RSA and Blowfish. (b) IV Uniqueness Test results.

IV Uniqueness Test: The Initialization Vector (IV) Uniqueness Test was conducted to
evaluate the security of the process of encryption, specifically in Cipher Block Chaining
(CBC) and Counter (CTR) modes, where reusing IV leads to cryptographic issues. All
created IVs were found to be unique by analyzing the occurrence of duplicate IVs, thus
reducing the risk of plaintext pattern leakage. These results validate the reliability of
the IV generation technique in maintaining encryption detail. Figure 24b confirms that
each encrypted piece of data utilizes a different Initialization Vector (IV), maintaining
CBC mode security standards and reducing issues such as pattern leakage and chosen-
plaintext attacks.

5.5. Data Validation and Integrity Checking

Data reliability and quality are crucial for resilient models. This section defines the
methodologies used for data validation and integrity verification, including anomaly
detection, consistency checks, and redundancy processes. The statistical method Z-scores,
which measure the deviation of data points from the mean, were used to detect anomalies.
Anomalies are characterized by a Z-score > 1.5, indicating that data points deviate from a
normal distribution. The Z-score threshold of 1.5 is chosen empirically after experiments
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with multiple thresholds (1.0, 1.5, 2.0). Threshold = 1.5 provided the best balance between
sensitivity (detecting anomalies) and specificity (avoiding false positives), consistent with
values commonly used in prior anomaly detection studies. Figure 25a demonstrates that the
majority of data points display a low anomaly score, ranging between 0.5 and 0.75. The tail
distribution is long because some data points have extreme anomaly scores (more than 1.25).
A few data points do not exhibit the expected trends, while most operate normally. The data
points in Figure 25b fall within the interquartile range (IQR), validating that the normal
values are closely clustered. Values beyond 1.5 × IQR indicate many outliers, with certain
values beyond 6.0. High outliers indicate anomalous behaviour that may be associated with
unexpected operational fluctuations, sensor malfunctions, power quality issues, voltage
changes, and harmonic distortions. Redundancy mechanisms for accuracy enhancement
are implemented by cross-verifying the three-phase voltage measurements (V_a, V_b, and
V_c). Figure 26 demonstrates that the individual voltage signals are exactly aligned, and
the computed mean voltage further proves the uniformity across the phases.

Figure 25. (a) Anomaly scores (mean of Z-scores). (b) Box plot for outlier detection (anomaly scores).

Figure 26. Phase voltages over samples.

5.6. Power Quality Control and Harmonics

This section outlines the results of power quality control measures, including adaptive
filtering, dynamic recalibration, and threshold alarms. The findings indicate that the inte-
grated approach decreases harmonic distortions and improves operational stability while
complying with IEEE 519-2022 standards. Adaptive filtering for harmonic auppression
is implemented using a low-pass Butterworth filter on the V_a signal, which is essential
to minimize the impact of harmonic injection. The filtered signal maintains the overall
trend of the original measurement, as shown in Figure 27, while effectively reducing
high-frequency noise. This filtering method is essential for verifying harmonic analysis,
as it improves the interpretation of the fundamental voltage waveform. The system can
initiate a dynamic Inverter Control Parameter recalibration process when the anomaly score
surpasses a predetermined threshold. However, a majority of values remain within normal
parameters, as illustrated in Figure 28a,b. The framework is established to modify control
parameters. This ensures that the system can maintain optimal performance despite minor
variations. A correlation heatmap, Figure 29, of selected parameters, phase voltages, load
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currents, power, and THD percentages highlights strong interdependencies among these
variables. Threshold alarms have been established to monitor Total Harmonic Distortion
(THD) values. The IEEE 519-2022 guidelines indicate that Total Harmonic Distortion (THD)
values exceeding 5% are frequently harmful. The results show that the THD values for
phases A, B, and C constantly stay beneath the threshold, showing that the system runs
within acceptable harmonic distortion limitations and ensuring good power quality, as seen
in Figure 28.

Figure 27. Adaptive filtering on V_a signal (original vs. filtered signal).

Figure 28. (a) Time series of THD percentages (first 1000 samples). (b) THD percentages for random
samples of each phase.

Figure 29. Correlation heatmap of selected features.
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Verifying compliance with the IEEE 519 standard for Total Harmonic Distortion (THD)
for all three phases provided information about power quality throughout system operation.
This was carried out by measuring THD levels against the stated threshold of 5% for
voltage harmonics at the point of common coupling (PCC). The maximum Total Harmonic
Distortion (THD) values recorded across all phases were consistently 1.00%. The statistical
analysis revealed mean Total Harmonic Distortion (THD) values of 0.0035% for Phase
A and 0.0036% for Phases B and C. All phases demonstrated a standard deviation of
approximately 0.046%, indicating consistent harmonic performance. Furthermore, the
distribution characteristics showed that the 75th percentile values were below 0.001%,
while the maximum values remained far below the IEEE 519 criteria of 5%. All three phases
exhibited high compliance with IEEE 519 requirements, with median THD values (50th
percentile) consistently below 0.001% and maximum THD values only reaching 20% of
the acceptable limit, indicating successful harmonic mitigation and balanced operation.
These findings demonstrate that the BESS data upholds superior power quality during
standard operating settings, remaining far below regulatory thresholds, indicative of
efficient harmonic control measures.

5.7. Multi-Layered Security Analysis of BESS

The analysis of attack data assessed the influence of assaults on 20 critical BESS
parameters. The mean absolute differences between normal and attack data are illus-
trated in Figure 30a, describing the variable effects across various features. Significant
variations in power-related metrics (P_bat, P_ref) and voltage measurements (V_dc_bat,
V_dc_link) were identified in this study, indicating that the attack prioritized power flow
manipulation. A voltage-based protection system was established using the V_dc_bat
parameter, with thresholds set at the standard operational data’s 5th and 95th percentiles.
As illustrated in Figure 30b, the protection system accomplished detection of trip percent-
age: 59.49% abnormal samples and clear discrimination between normal and attacked
voltage profiles established protection boundaries with lower threshold = 663.7 V and
upper threshold = 675.78 V.

Figure 30. (a) Mean absolute difference for features. (b) Electrical protection mechanism on V_dc_bat.

High-frequency analysis of I_dc_bat showed unique features, including more noise
and distortion during attacks, as shown in Figure 31a. During normal operation, sinu-
soidal waveforms were reliably detected with a noise level of 2%. The waveforms that
were attacked exhibited distortion patterns and an increase in noise of 10%. A higher
harmonic content was found by frequency domain analysis under attack conditions. The
Data Integrity Assessment’s power consistency tests in Figure 31b show variations between
the calculated and measured power values. To verify consistency, the computed power
(V_dc_bat × I_dc_bat) was compared to the measured battery power P_bat. A statisti-
cal threshold of µ + 3σ was defined for anomaly identification, which discovered that
78 instances had integrity violations above the threshold, indicating a temporal correlation
with attack intervals. These results show data modification during attack occurrences.
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Figure 31. (a) Waveform data analysis for I_dc_bat. (b) Data integrity issues in power calculation.

6. Conclusions
This work introduces an end-to-end architecture that integrates machine-learning–based

cyberattack detection with cryptographic protection for Battery Energy Storage Systems
(BESSs). Random Forest and LightGBM emerged as effective classification models for the
BESS-Set dataset, achieving high accuracy while remaining computationally efficient for
embedded deployment. For secure communication, the system employs Elliptic Curve Cryp-
tography (ECC) and a hybrid Blowfish–RSA scheme to protect classified outputs. Deployment
of the ML models on the PYNQ-Z2 board demonstrated real-time feasibility in resource-
constrained environments. The RAM usage, inference latency, and power draw during
execution were reported, providing a clearer picture of the hardware performance for edge
deployment scenarios.

Despite these contributions, some methodological limitations exist. The current study
primarily relies on SMOTE to counter class imbalance, which may limit robustness on
more complex or highly imbalanced datasets. Future work will investigate alternatives
such as ADASYN or hybrid resampling approaches. Another limitation is that the study
relies exclusively on the simulated BESS-Set dataset. This dataset provides a controlled and
well-labeled environment for evaluating anomaly detection and attack classification; it does
not fully capture real-world complexities such as noisy sensor measurements, intermittent
communication delays, hardware-related variability, and environmental disturbances. To
improve generalizability, future work will focus on validating the framework with empirical
BESS datasets and conducting stress tests under noisy dynamic operating conditions. In
the current setup, cryptographic operations were implemented separately at the software
level and not executed on the PYNQ-Z2 board. As part of our ongoing research, we
plan to integrate the full system including anomaly detection, cryptographic security, and
validation modules on the hardware platform to assess end-to-end computational overhead
and scalability under variable load and attack scenarios.

This study focuses on a BESS; the vulnerabilities addressed are representative of a
broader class of issues in IoT-based cyber-physical systems. Similar risks arise in domains
such as smart grids, healthcare IoT, industrial IoT, and smart homes, where devices are
often resource-constrained, highly interconnected, and deployed without strong security-
by-design principles. Comparable efforts can also be observed in Ambient Assisted Living,
where AI-driven facial emotion recognition is employed to adapt environments to users’ af-
fective states Ref. [29]. Recent advances in facial expression recognition have demonstrated
the ability to extract highly discriminative local descriptors and improve classification
performance across benchmark datasets Ref. [30]. Similarly, industrial applications demon-
strate the feasibility of combining CNN architectures with sensor-driven data acquisition
for predictive monitoring Ref. [31]. The proposed integration of AI-driven intrusion de-
tection with lightweight cryptographic methods thus represents a generalizable defense
strategy for IoT ecosystems. By validating this framework in a BESS, we provide a proof of
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concept that can be extended to other application domains requiring secure, efficient, and
real-time protection mechanisms.

Future research will prioritize testing the framework on real BESS testbeds with
noisy and delayed sensor data. Additional directions include exploring federated learning
for decentralized attack detection and investigating advanced lightweight deep learning
architectures (e.g., CNNs and Transformers) to enhance robustness and generalization.
With these constraints alleviated, the proposed framework can evolve into a scalable and
dependable solution for secure, intelligent energy storage systems and beyond.
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